4 research outputs found

    Dual Consistency Enabled Weakly and Semi-Supervised Optic Disc and Cup Segmentation with Dual Adaptive Graph Convolutional Networks.

    Get PDF
    Glaucoma is a progressive eye disease that results in permanent vision loss, and the vertical cup to disc ratio (vCDR) in colour fundus images is essential in glaucoma screening and assessment. Previous fully supervised convolution neural networks segment the optic disc (OD) and optic cup (OC) from color fundus images and then calculate the vCDR offline. However, they rely on a large set of labeled masks for training, which is expensive and time-consuming to acquire. To address this, we propose a weakly and semi-supervised graph-based network that investigates geometric associations and domain knowledge between segmentation probability maps (PM), modified signed distance function representations (mSDF), and boundary region of interest characteristics (B-ROI) in three aspects. Firstly, we propose a novel Dual Adaptive Graph Convolutional Network (DAGCN) to reason the long-range features of the PM and the mSDF w.r.t. the regional uniformity. Secondly, we propose a dual consistency regularization-based semi-supervised learning paradigm. The regional consistency between the PM and the mSDF, and the marginal consistency between the derived B-ROI from each of them boost the proposed model's performance due to the inherent geometric associations. Thirdly, we exploit the task-specific domain knowledge via the oval shapes of OD & OC, where a differentiable vCDR estimating layer is proposed. Furthermore, without additional annotations, the supervision on vCDR serves as weakly-supervisions for segmentation tasks. Experiments on six large-scale datasets demonstrate our model's superior performance on OD & OC segmentation and vCDR estimation. The implementation code has been made available 1

    Shape-Aware Weakly/Semi-Supervised Optic Disc and Cup Segmentation with Regional/Marginal Consistency

    Get PDF
    Glaucoma is a chronic eye disease that permanently impairs vision. Vertical cup to disc ratio (vCDR) is essential for glaucoma screening. Thus, accurately segmenting the optic disc (OD) and optic cup (OC) from colour fundus images is essential. Previous fully-supervised methods achieved accurate segmentation results; then, they calculated the vCDR with offline post-processing step. However, a large set of labeled segmentation images are required for the training, which is costly and time-consuming. To solve this, we propose a weakly/semi-supervised framework with the benefits of geometric associations and specific domain knowledge between pixel-wise segmentation probability map (PM), geometry-aware modified signed distance function representations (mSDF), and local boundary region of interest characteristics (B-ROI). Firstly, we propose a dual consistency regularisation based semi-supervised paradigm, where the regional and marginal consistency benefits the proposed model from the objects’ inherent region and boundary coherence of a large amount of unlabeled data. Secondly, for the first time, we exploit the domain-specific knowledge between the boundary and region in terms of the perimeter and area of an oval shape of OD & OC, where a differentiable vCDR estimating module is proposed for the end-to-end training. Thus, our model does not need any offline post-process to generate vCDR. Furthermore, without requiring any additional laborious annotations, the supervision on vCDR can serve as a weakly-supervision for OD & OC region and boundary segmentation. Experiments on six large-scale datasets demonstrate that our method outperforms state-of-the-art semi-supervised approaches for segmentation of the optic disc and optic cup, and estimation of vCDR for glaucoma assessment in colour fundus images, respectively. The implementation code is made available. (https://github.com/smallmax00/Share_aware_Weakly-Semi_ODOC_seg
    corecore